version 0.6.0
Loading...
Searching...
No Matches
Reminder

Dimensionless Quantities

Dimensionless Quantity Definition Description Associated Regime
Reynolds \( Re = \frac{\rho V L}{\mu} \) Ratio between inertial and viscous forces Stokes / steady or unsteady laminar / turbulent
Prandtl \( Pr = \frac{\nu}{\alpha} = \frac{c_p \mu}{k} \) Ratio between momentum diffusivity and thermal diffusivity Momentum or thermal diffusivity driven flows
Rayleigh \( Ra = \frac{\rho \beta \Delta T g L^3}{\mu \alpha} \) Ratio between thermal diffusion and thermal convection time scales Associated with laminar or turbulent free convection flows (buoyancy-driven); can also be relative to pure conduction regimes or mixed convection flows
Nusselt \( Nu = \frac{h L}{k} \) At a boundary, ratio between convective and conductive heat transfer Pure conduction \( (<= 1) \), laminar or turbulent regime above
Atwood \( A = \frac{\rho_{heavy} - \rho_{light}}{\rho_{heavy} + \rho_{light}} \) Normalized relative density ratio, mostly used for studying the Rayleigh-Taylor instability Same density \( = 0 \); massless light fluid \( = 1 \)

With:

  • \( L \): characteristic length ( \( m \))
  • \( V \): velocity ( \( m.s^{-1} \))
  • \( T \): temperature ( \( K \))
  • \( \beta \): thermal expansion coefficient ( \( K^{-1} \))
  • \( \rho \): density ( \( kg.m^{-3} \))
  • \( \mu \): dynamic viscosity ( \( Pa.s \equiv kg.m^{-1}.s^{-1} \))
  • \( \nu = \frac{\mu}{\rho} \): kinematic viscosity
  • \( c_p \): specific heat ( \( J.kg^{-1}.K^{-1} \))
  • \( k \): thermal conductivity ( \( W.m^{-1}.K^{-1} \))
  • \( \alpha = \frac{k}{\rho c_p} \): thermal diffusivity
  • \( h = \frac{q}{\Delta T} \): heat transfer coefficient ( \( W.m^{-2}.K^{-1} \)), with \( q \) the heat flux ( \( W.m^{-2} \))
  • \( g \): gravity constant ( \( m.s^{-2} \))