Initialize and prepare resolution of immersed boundary conditions. More...
| Namespaces | |
| module | mod_immersed_boundary_condition_tools | 
| Tools to manipulate immersed boundaries variables. | |
| module | mod_prepare_immersed_boundary_condition | 
| Immersed Boundaries variable initializers. | |
| module | mod_setup_cell_ibm_saved_variables | 
| Interface to prepare immersed boundary variables. | |
| module | type_immersed_boundary_condition | 
| Data types for immersed boundaries. | |
| Classes | |
| type | type_immersed_boundary_condition::t_immersed_boundary_condition | 
| Field-related information to immersed boundary.  More... | |
| type | type_immersed_boundary_condition::t_face_immersed_boundary_condition | 
| Store ibc-related variable data.  More... | |
| Enumerations | |
| enum | { enum_ibc_type::ibc_type_dirichlet , enum_ibc_type::ibc_type_neumann , enum_ibc_type::ibc_type_wall , enum_ibc_type::ibc_interpolation_type } | 
| Types of immersed boundaries.  More... | |
| enum | { enum_ibc_method::ibc_method_volume_penalization , enum_ibc_method::ibc_method_lagrange_interpolation , enum_ibc_method::ibc_method_linear_or_quadratic_interpolation } | 
| Methods for immersed boundaries.  More... | |
Initialize and prepare resolution of immersed boundary conditions.
| anonymous enum | 
| anonymous enum | 
Methods for immersed boundaries.
The goal of the different methods is to compute a value of the considered unkwown on ghost nodes thanks a boundary condition and values at inner nodes.
A. Dirichlet boundary condition
Values at the boundary point (B) are interpolated using 2D(-3D) Lagrange polynomials.
Values at the boundary point (B) are interpolated as follow:
G B P |-----|---------| α 1-α
where the probe point (P) is interpolated using 2D(-3D) Lagrange polynomials. The boundary point value is then given by:
u_B = α u_P + (1-α) u_G
For quadratic interpolation method, values at the boundary point (B) are interpolated with 3 points G,P, and P2:
G B P P2 |-----|---------|----------|
where the probe point (P and P2) are interpolated using 2D(-3D) Lagrange polynomials. The boundary point value is then given by:
u_B = m u_P + + n u_P2 + l u_G
B. Neumann boundary conditions
C. Volume penalization method