version 0.6.0
Loading...
Searching...
No Matches
Immersed Boundary Condition

Initialize and prepare resolution of immersed boundary conditions. More...

Namespaces

module  mod_immersed_boundary_condition_tools
 Tools to manipulate immersed boundaries variables.
 
module  mod_prepare_immersed_boundary_condition
 Immersed Boundaries variable initializers.
 
module  mod_setup_cell_ibm_saved_variables
 Interface to prepare immersed boundary variables.
 
module  type_immersed_boundary_condition
 Data types for immersed boundaries.
 

Classes

type  type_immersed_boundary_condition::t_immersed_boundary_condition
 Field-related information to immersed boundary. More...
 
type  type_immersed_boundary_condition::t_face_immersed_boundary_condition
 Store ibc-related variable data. More...
 

Enumerations

enum  { enum_ibc_type::ibc_type_dirichlet , enum_ibc_type::ibc_type_neumann , enum_ibc_type::ibc_type_wall , enum_ibc_type::ibc_interpolation_type }
 Types of immersed boundaries. More...
 
enum  { enum_ibc_method::ibc_method_volume_penalization , enum_ibc_method::ibc_method_lagrange_interpolation , enum_ibc_method::ibc_method_linear_or_quadratic_interpolation }
 Methods for immersed boundaries. More...
 

Detailed Description

Enumeration Type Documentation

◆ anonymous enum

anonymous enum
Enumerator
ibc_type_dirichlet 

Dirichlet boundary condition.

ibc_type_neumann 

Neumann boundary condition.

ibc_type_wall 

Wall boundary condition.

ibc_interpolation_type 

Special flag for IBM interpolation. Equivalent to Dirichlet.

◆ anonymous enum

anonymous enum

The goal of the different methods is to compute a value of the considered unkwown on ghost nodes thanks a boundary condition and values at inner nodes.

A. Dirichlet boundary condition

  1. Direct method

Values at the boundary point (B) are interpolated using 2D(-3D) Lagrange polynomials.

  1. Linear/Quadratic interpolation method

Values at the boundary point (B) are interpolated as follow:

G     B         P
|-----|---------|
   α      1-α

where the probe point (P) is interpolated using 2D(-3D) Lagrange polynomials. The boundary point value is then given by:

u_B = α u_P + (1-α) u_G

For quadratic interpolation method, values at the boundary point (B) are interpolated with 3 points G,P, and P2:

G     B         P          P2
|-----|---------|----------|

where the probe point (P and P2) are interpolated using 2D(-3D) Lagrange polynomials. The boundary point value is then given by:

u_B = m u_P + + n u_P2 + l u_G

B. Neumann boundary conditions

Todo

C. Volume penalization method

Todo
Enumerator
ibc_method_volume_penalization 

Volume penalization method.

ibc_method_lagrange_interpolation 

Lagrange interpolation method.

ibc_method_linear_or_quadratic_interpolation 

Linear/quadratic interpolation method.