version 0.6.0
Loading...
Searching...
No Matches
Poiseuille flow with immersed boundary conditions

This test case solves the Poiseuille flow with immersed boundary conditions.

Configurations

Physical domain.

The global boundaries are defined by the intevales:

\begin{align} [0, 2] &\quad\text{in the flow direction,} & [-1, +1] &\quad\text{otherwise.} \end{align}

The immersed boundary is either a flatchannel of a cylinder:

\begin{align} y = \pm h &\quad\text{(flatchannel),} & x^2 + y^2 = h^2 &\quad\text{(cylinder),} \end{align}

where \(h = \frac{1}{2} \frac{262144}{177147} \), which is half the wolf interval of the Pythagorean scale. This has been chosed to avoid the boundary to match any grid.

Solutions

The velocity has the following parabolic shape: solution:

\begin{align} u(y) = \hat{u} \left(1 - \frac{y^2}{h^2}\right) &\quad\text{(flatchannel),} & u(r) = \hat{u} \left(1 - \frac{r^2}{h^2}\right) &\quad\text{(cylinder).} \end{align}

The flow is pushed by the navier source term, which should be equal to:

\begin{align} f_x = 2 \frac{\mu\hat{u}}{h^2} &\quad\text{(flatchannel),} & f_y = 4 \frac{\mu\hat{u}}{h^2} &\quad\text{(cylinder),} \end{align}

where \( \mu \) is the dynamic viscosity of the fluid. Using the navier source term yields a constant pressure gradient, which allows the domain to be periodic in the flow direction.

The average velocity is computed from the integral:

\begin{align} V \bar{u} = \int_{-h}^{+h}{u(y)\mathrm{d}y} = 2 h \hat{u} \int_0^1 {(1 - z^2) \mathrm{d}z} &\quad\text{(flatchannel),} \\ V \bar{u} = \int_{0}^{2\pi}\int_{0}^{+h}{u(r)r\mathrm{d}r\mathrm{d}\theta} = 2 \pi h^2 \hat{u} \int_0^1 {(1 - z^2) z \mathrm{d}z} &\quad\text{(cylinder),} \end{align}

giving:

\begin{align} \bar{u} = \frac{2}{3}\hat{u} &\quad\text{(flatchannel),} & \bar{u} = \frac{1}{2}\hat{u} &\quad\text{(cylinder).} \end{align}

In the actual test case, the dynamic viscosity of the fluid is set to match a given Reynolds number, which is defined by:

\begin{align} \mathit{Re} = \frac {2h \times \bar{u}} {\mu} \end{align}

We choose to set \(\bar{u}\) and \(\mu\) as follows:

\begin{align} \bar{u} &= \frac {1} {2h} & \mu = \frac {1} {\mathit{Re}} \end{align}

Values are given in the table below.

Geometry \( \bar{u} \)
flatchannel \( \tfrac{59049}{131072} = 0.45050811767578125\ldots \)
cylinder \( \tfrac{177147}{524288} = 0.33788108825683594\ldots \)

and \( \mathit{Re} = 20\).

Boundary conditions

Boundary Condition
left Neumann
right Neumann
bottom Wall
top Wall
back Wall
front Wall

Grids

Label D's Size
2D 32×32
3D 16×16×16

Test case list

Label
poiseuille
poiseuille_3D

Runtime parameters

The following common settings are used:

3. Results

poiseuille

Mesh \(L^\infty\) error Order \(L^2\) error Order
16 4.69593096e-03 n/a 7.95143694e-03 n/a
32 1.07964363e-03 +2.1209 1.84280242e-03 +2.1093
64 1.75571802e-04 +2.6204 3.00863636e-04 +2.6147
128 3.75877241e-05 +2.2237 6.42961656e-05 +2.2263
256 1.24056177e-05 +1.5993 2.13212113e-05 +1.5924
512 1.45314236e-06 +3.0937 2.49594936e-06 +3.0946