Laplacian test cases with Neumann boundary conditions (2D/3D)
This test case solves the 2D/3D Laplace equation with Neumann - homogeneous or not - boundary conditions on all boundaries. The aims of this test case are:
Domain is rectangular, its opposite corner coordinates being \((0,0,0)\) and \((1,1,1)\). We solve \(- \Delta T=f\) on the whole domain. Neumann - homogeneous or not - boundary conditions are applied all boundaries. The \(\alpha\) parameter helps to switch from homogeneous ( \(\alpha = 0\)) to non homogeneous case ( \(\alpha = 1\)). Reference solutions of the probem in 2D/3D are (see figure below):
Right-end-side in 2D/3D are:
Energy equation is used:
Second order spatial convergence is expected.
The grid size starts from 10 in every direction to 160. Second order convergence is observed with \(L_2\), \(L_1\) or \(L_\infty\) norms.
2D results
mesh | \(L_\infty\) error | Order | \(L_1\) error | Order | \(L_2\) error | Order |
---|---|---|---|---|---|---|
10 | 2.566580e-03 | n/a | 1.075103e-03 | n/a | 1.315482e-03 | n/a |
20 | 6.512728e-04 | 1.98 | 2.661326e-04 | 2.01 | 3.276534e-04 | 2.01 |
40 | 1.634228e-04 | 1.99 | 6.636913e-05 | 2.00 | 8.183755e-05 | 2.00 |
80 | 4.089354e-05 | 2.00 | 1.658205e-05 | 2.00 | 2.045465e-05 | 2.00 |
3D results
mesh | \(L_\infty\) error | Order | \(L_1\) error | Order | \(L_2\) error | Order |
---|---|---|---|---|---|---|
10 | 2.534981e-03 | n/a | 6.872545e-04 | n/a | 9.301862e-04 | n/a |
20 | 6.492651e-04 | 1.97 | 1.695996e-04 | 2.02 | 2.316859e-04 | 2.01 |
40 | 1.632968e-04 | 1.99 | 4.226276e-05 | 2.00 | 5.786789e-05 | 2.00 |
80 | 4.088565e-05 | 2.00 | 1.055714e-05 | 2.00 | 1.446362e-05 | 2.00 |