Isentropic injection in a square cavity.
This test case solves the isentropic injection flow in a square cavity at \( v=-0.01 ms^{-1} \). The aim of this test case is to validate the compressible Stokes equations, coupled with the energy equation and a perfect gas equation of state
A square cavity of length \( L\!=\!1 mm \) is filled with air considered as a perfect gas ( \(R=287 JK^{-1}kg^{-1} \), \( \gamma=c_p/c_v=1.4 \)).
At initial time, the following thermodynamic state is imposed \((T_0,p_0,\rho_0)=(300 K,101325 Pa,\frac{p_0}{R T_0})\). A fluid in the same thermodynamic state as the cavity is injected from the top with a vertical velocity \(v_0 = -0.01 ms^{-1}\). The dimensionless parameters of the problem are respectively the initial Reynolds, Mach and Prandtl numbers \( Re_0=\rho_0 v_0 L / \mu_0 = 6.36 \ 10^{-1}\), \(Ma_0=u_0 /c_0 = 5.37 \ 10^{-4}\), \(Pr_0=c_p\mu_0 /\lambda_0 = 7.04 \ 10^{-1}\).
The analytical solution of the problem can be found from [1,2]. Under the Stokes hypothesis ( \(Re\leq1\)), the test case exhibits a vertical linear velocity field \(v_y = -v_0 y\), with a constant velocity divergence \( \nabla \cdot \mathbf{u} = -v_0 \). Considering our hypothesis, using the law of reversible adiabatic process and the perfet gas EoS, the thermodynamic solution of the problem starting at \(t_0=0\) reads to
\[ p = p_0 \exp(\gamma t v_0/L), \]
\[ T = T_0 \exp((\gamma-1) t v_0/L), \]
\[ \rho = \rho_0 \exp(t v_0/L ). \]
For velocity boundary conditions, left and right boundaries have slip conditions, top has a Dirichlet condition for injection \(\mathbf{u}_{top}=[0,-v_0]^T\) and bottom has a no-slip condition. For temperature boundary conditions, all the boundaries have homogeneous Neumann conditions.
Main parameters to run this test case are:
Thermodynamic variables do not vary in space (0D benchmark) allowing temporal convergence study without any effect of spatial error (linear velocity).
Next tables presents the temporal convergence study. Temporal second-order is achieved for pressure, density and temperature, for both \(L^2\) and \(L^∞\) norms. We do not present velocity errors in the table because, whatever the time step, the exact velocity is reached as expected with errors close to the resolution tolerance of linear systems ( \(10^{−14}\)). As the problem is 1D for velocity and 0D for the other variables, conclusions do not change whatever be the mesh size form \(8^2\) to \(128^2\). Let us note the significant variations in pressure, temperature and density, final values at time \(t_f = 0.1\) being \(3.0955 \ 10^5 Pa\), \(4.4755 \ 10^2 K\) and \(3.1988 kg m^{−3}\) , respectively.
Time step | Pressure L2 error | order | Pressure Linf error | order | Temperature L2 error | order |
---|---|---|---|---|---|---|
0.0004 | 0.01351693784151908 | n/a | 13.517042881052475 | n/a | 3.278375847497818e-07 | n/a |
0.0002 | 0.0033885007766308113 | 1.996 | 3.3886060768272728 | 1.996 | 8.156741641003722e-08 | 2.007 |
0.0001 | 0.000848174188023622 | 1.998 | 0.8482795509626158 | 1.998 | 2.037476099246218e-08 | 2.001 |
5e-05 | 0.00021199861205905388 | 2.000 | 0.2121039865887724 | 2.000 | 5.1439637408884406e-09 | 1.986 |
2.5e-05 | 5.283601462849286e-05 | 2.004 | 0.05294137715827674 | 2.002 | 1.338633454943237e-09 | 1.942 |
1.25e-05 | 1.3037906474873095e-05 | 2.019 | 0.01314320438541472 | 2.010 | 3.8594624988864556e-10 | 1.794 |
Time step | Temperature Linf error | order | Density L2 error | order | Density Linf error | order |
---|---|---|---|---|---|---|
0.0004 | 0.00032784388133677567 | n/a | 1.0757753336199626e-07 | n/a | 0.0001075783961352883 | n/a |
0.0002 | 8.157376123563154e-05 | 2.007 | 2.6963738022719424e-08 | 1.996 | 2.6964603172974222e-05 | 1.996 |
0.0001 | 2.0381128308599727e-05 | 2.001 | 6.748980049455423e-09 | 1.998 | 6.749845851139469e-06 | 1.998 |
5e-05 | 5.150320077973447e-06 | 1.984 | 1.6872545700708185e-09 | 2.000 | 1.6881203896979002e-06 | 1.999 |
2.5e-05 | 1.344979636996868e-06 | 1.937 | 4.2091591293747036e-10 | 2.003 | 4.2178158432548685e-07 | 2.001 |
1.25e-05 | 3.9236527982211555e-07 | 1.777 | 1.0426344723932049e-10 | 2.013 | 1.0512918713345698e-07 | 2.004 |
[1] J.-P. Caltagirone. An alternative model of euler equations based on conservation of acceleration. Submited to Journal of Computational Physics, 2024.
[2] J. Jansen, S. Glockner, D. Sharma, A. Erriguible, Incremental pressure correction method for subsonic compressible flows, Submited to Journal of Computational Physics, 2024.