version 0.6.0
Loading...
Searching...
No Matches
mod_laplacian_operator_cell_to_cell Module Reference

Laplacian operator from cells to cells.

Functions/Subroutines

subroutine laplacian_operator_cell_to_cell (field, laplacian, order)
 Laplacian using n-th order centered differences.
 
subroutine laplacian_operator_cell_to_cell_generic (scheme_second, field, field_res)
 Compute the laplacian of field on cells with the given scheme.
 

Function/Subroutine Documentation

◆ laplacian_operator_cell_to_cell()

subroutine mod_laplacian_operator_cell_to_cell::laplacian_operator_cell_to_cell ( double precision, dimension(:,:,:), intent(in) field,
double precision, dimension(:,:,:), intent(inout) laplacian,
integer order )

Laplacian using n-th order centered differences.

The Laplacian of \( \phi \) is

\begin{align} \Delta \phi &= \frac{\partial^2 \phi}{\partial x \partial x} + \frac{\partial^2 \phi}{\partial y \partial y} + \frac{\partial^2 \phi}{\partial z \partial z} \,. \end{align}

The actual scheme is selected using the order and direction arguments. The former selects the order of finites differences, while the latter select the centering

Valid values for order is 2 and 4.

Parameters
[in]fieldcell field to derivate
[in,out]laplaciancell field holding the Hessian
[in]orderof the finite-difference scheme

◆ laplacian_operator_cell_to_cell_generic()

subroutine mod_laplacian_operator_cell_to_cell::laplacian_operator_cell_to_cell_generic ( class(t_fd_scheme), intent(inout) scheme_second,
double precision, dimension(:,:,:), intent(in) field,
double precision, dimension(:,:,:), intent(inout) field_res )
Parameters
[in,out]scheme_secondthe second FD scheme
[in]fieldthe input field for which we comptue the gradient
[in,out]field_resthe resulting gradient field