Laplacian operator from cells to cells.
Functions/Subroutines | |
subroutine | laplacian_operator_cell_to_cell (field, laplacian, order) |
Laplacian using n-th order centered differences. | |
subroutine | laplacian_operator_cell_to_cell_generic (scheme_second, field, field_res) |
Compute the laplacian of field on cells with the given scheme. | |
subroutine mod_laplacian_operator_cell_to_cell::laplacian_operator_cell_to_cell | ( | double precision, dimension(:,:,:), intent(in) | field, |
double precision, dimension(:,:,:), intent(inout) | laplacian, | ||
integer | order ) |
Laplacian using n-th order centered differences.
The Laplacian of \( \phi \) is
\begin{align} \Delta \phi &= \frac{\partial^2 \phi}{\partial x \partial x} + \frac{\partial^2 \phi}{\partial y \partial y} + \frac{\partial^2 \phi}{\partial z \partial z} \,. \end{align}
The actual scheme is selected using the order
and direction
arguments. The former selects the order of finites differences, while the latter select the centering
Valid values for order
is 2 and 4.
[in] | field | cell field to derivate |
[in,out] | laplacian | cell field holding the Hessian |
[in] | order | of the finite-difference scheme |
subroutine mod_laplacian_operator_cell_to_cell::laplacian_operator_cell_to_cell_generic | ( | class(t_fd_scheme), intent(inout) | scheme_second, |
double precision, dimension(:,:,:), intent(in) | field, | ||
double precision, dimension(:,:,:), intent(inout) | field_res ) |
[in,out] | scheme_second | the second FD scheme |
[in] | field | the input field for which we comptue the gradient |
[in,out] | field_res | the resulting gradient field |