version 0.6.0
Loading...
Searching...
No Matches
mod_interpolation_polynomial Module Reference

Polynomial functions. More...

Functions/Subroutines

pure double precision function evaluate_polynomial (x, coefficients)
 Evaluate a polynomial at x such that \( P(x) = \sum_{i=0} a_i x^i \).
 
pure double precision function, dimension(size(coeffs1)+size(coeffs2) -1) multiply_polynomials (coeffs1, coeffs2)
 Multiply a polynomial by another one.
 
pure double precision function, dimension(size(coefficients) -1) derivate_polynomial (coefficients)
 Derivate a polynomial defined by its N coefficients.
 
recursive pure double precision function, dimension(size(coefficients) -m) derivate_polynomial_m (coefficients, m)
 Derivate M times a polynomial defined by its N coefficients.
 
pure double precision function, dimension(size(coefficients)+1) integrate_polynomial (coefficients)
 Integrate a polynomial defined by its N coefficients.
 
pure double precision function evaluate_polynomial_integral (x1, x2, coefficients)
 Integrate the polynomial in the given interval.
 
pure double precision function evaluate_polynomial_mean (x1, x2, coefficients)
 Compute the mean value of the polynomial in the given interval.
 
pure double precision function, dimension(n) get_xvector (x, n)
 Get the vector made of the powers of x.
 

Detailed Description

Polynomial functions numerical evaluation. Can also multiply, derivate, integrate, etc. a polynomial.

Function/Subroutine Documentation

◆ derivate_polynomial()

pure double precision function, dimension(size(coefficients)-1) mod_interpolation_polynomial::derivate_polynomial ( double precision, dimension(:), intent(in) coefficients)
Returns
The result is a coefficient list of size N-1
Note
The constant is set to 0

◆ derivate_polynomial_m()

recursive pure double precision function, dimension(size(coefficients)-m) mod_interpolation_polynomial::derivate_polynomial_m ( double precision, dimension(:), intent(in) coefficients,
integer, intent(in) m )
Returns
The result is a coefficient list of size N-M
Note
The constant is set to 0

◆ evaluate_polynomial()

pure double precision function mod_interpolation_polynomial::evaluate_polynomial ( double precision, intent(in) x,
double precision, dimension(:), intent(in) coefficients )
Parameters
[in]xthe position where to evaluate
[in]coefficientsan array of the associated coefficients

◆ evaluate_polynomial_integral()

pure double precision function mod_interpolation_polynomial::evaluate_polynomial_integral ( double precision, intent(in) x1,
double precision, intent(in) x2,
double precision, dimension(:), intent(in) coefficients )
Returns
The mean of the polynomial evaluated in the interval [x1,x2]

◆ evaluate_polynomial_mean()

pure double precision function mod_interpolation_polynomial::evaluate_polynomial_mean ( double precision, intent(in) x1,
double precision, intent(in) x2,
double precision, dimension(:), intent(in) coefficients )
Returns
The mean of the polynomial evaluated in the interval [x1,x2]

◆ get_xvector()

pure double precision function, dimension(n) mod_interpolation_polynomial::get_xvector ( double precision, intent(in) x,
integer, intent(in) n )
Parameters
[in]xthe position
[in]Nthe size of the array

◆ integrate_polynomial()

pure double precision function, dimension(size(coefficients)+1) mod_interpolation_polynomial::integrate_polynomial ( double precision, dimension(:), intent(in) coefficients)
Returns
The result is a coefficient list of size N+1
Note
The constant is set to 0