version 0.6.0
Loading...
Searching...
No Matches
mod_interpolate_field_time Module Reference

Interpolate between fields. As most of interpolationg of fields are done in time, the module has been explicitely named with "time".

Functions/Subroutines

subroutine interpolate_face_field_o2 (field_tn, field_tnp1, dtn, time, field_res)
 Interpolate to field_res (t=time) at order 2 a face_field
 
subroutine interpolate_cell_field_o2 (field_tn, field_tnp1, dtn, time, field_res)
 Interpolate to field_res (t=time) at order 2 a cell scalar.
 
subroutine interpolate_face_field_o3 (field_tnm1, field_tn, field_tnp1, dtnm1, dtn, time, field_res)
 Interpolate to field_res (t=time) at order 3 a face_field
 
subroutine interpolate_cell_field_o3 (field_tnm1, field_tn, field_tnp1, dtnm1, dtn, time, field_res)
 Interpolate to field_res (t=time) at order 2 a cell scalar.
 

Function/Subroutine Documentation

◆ interpolate_cell_field_o2()

subroutine mod_interpolate_field_time::interpolate_cell_field_o2 ( double precision, dimension(:,:,:), intent(in) field_tn,
double precision, dimension(:,:,:), intent(in) field_tnp1,
double precision, intent(in) dtn,
double precision, intent(in) time,
double precision, dimension(:,:,:), intent(inout) field_res )
  • The fields (at time) : field_tn (t=0), field_tnp1 (t=dtn)
    Parameters
    [in]field_tnthe field at time \(t^{n}\)
    [in]field_tnp1the field at time \(t^{n+1}\)
    [in]dtn\( \Delta t^{n} = t^{n+1} - t^{n}\)
    [in]timethe time where to interpolate (usualy in \(\left[t^{n},t^{n+1}\right]\))
    [in,out]field_resthe resulting interpolated field
    Note
    In order to extrapolate, simply use this function with a time that is higher than \( t^{n+1} \).

◆ interpolate_cell_field_o3()

subroutine mod_interpolate_field_time::interpolate_cell_field_o3 ( double precision, dimension(:,:,:), intent(in) field_tnm1,
double precision, dimension(:,:,:), intent(in) field_tn,
double precision, dimension(:,:,:), intent(in) field_tnp1,
double precision, intent(in) dtnm1,
double precision, intent(in) dtn,
double precision, intent(in) time,
double precision, dimension(:,:,:), intent(inout) field_res )
  • The fields (at time) : field_tnm1 (t=-dtnm1), field_tn (t=0), field_tnp1 (t=dtn)
    Parameters
    [in]field_tnm1the field at time \(t^{n-1}\)
    [in]field_tnthe field at time \(t^{n}\)
    [in]field_tnp1the field at time \(t^{n+1}\)
    [in]dtnm1\( \Delta t^{n-1} = t^{n} - t^{n-1}\)
    [in]dtn\( \Delta t^{n} = t^{n+1} - t^{n}\)
    [in]timethe time where to interpolate (usualy in \(\left[t^{n-1},t^{n+1}\right]\))
    [in,out]field_resthe resulting interpolated field
    Note
    In order to extrapolate, simply use this function with a time that is higher than \( t^{n+1} \).

◆ interpolate_face_field_o2()

subroutine mod_interpolate_field_time::interpolate_face_field_o2 ( type(t_face_field), intent(in) field_tn,
type(t_face_field), intent(in) field_tnp1,
double precision, intent(in) dtn,
double precision, intent(in) time,
type(t_face_field), intent(inout) field_res )
  • The fields (at time) : field_tn (t=0), field_tnp1 (t=dtn)
    Parameters
    [in]field_tnthe field at time \(t^{n}\)
    [in]field_tnp1the field at time \(t^{n+1}\)
    [in]dtn\( \Delta t^{n} = t^{n+1} - t^{n}\)
    [in]timethe time where to interpolate (usualy in \(\left[t^{n},t^{n+1}\right]\))
    [in,out]field_resthe resulting interpolated field
    Note
    In order to extrapolate, simply use this function with a time that is higher than \( t^{n+1} \).

◆ interpolate_face_field_o3()

subroutine mod_interpolate_field_time::interpolate_face_field_o3 ( type(t_face_field), intent(in) field_tnm1,
type(t_face_field), intent(in) field_tn,
type(t_face_field), intent(in) field_tnp1,
double precision, intent(in) dtnm1,
double precision, intent(in) dtn,
double precision, intent(in) time,
type(t_face_field), intent(inout) field_res )
  • The fields (at time) : field_tnm1 (t=-dtnm1), field_tn (t=0), field_tnp1 (t=dtn)
    Parameters
    [in]field_tnm1the field at time \(t^{n-1}\)
    [in]field_tnthe field at time \(t^{n}\)
    [in]field_tnp1the field at time \(t^{n+1}\)
    [in]dtnm1\( \Delta t^{n-1} = t^{n} - t^{n-1}\)
    [in]dtn\( \Delta t^{n} = t^{n+1} - t^{n}\)
    [in]timethe time where to interpolate (usualy in \(\left[t^{n-1},t^{n+1}\right]\))
    [in,out]field_resthe resulting interpolated field
    Note
    In order to extrapolate, simply use this function with a time that is higher than \( t^{n+1} \).