|
| double precision function | mod_integration_computer::integ_compute_from_values (scheme, values, cell_width) |
| | Compute the integration via the scheme by giving the associated field values.
|
| |
| double precision function | mod_integration_computer::integ_compute_from_array (scheme, scheme_interp, step_array, cv_array, array, index) |
| | Compute the integration via the scheme by giving the associated array, the index where to compute the integration.
|
| |
| double precision function | mod_integration_computer::integ_compute_from_field (scheme, order, pos_field_x, pos_field_y, pos_field_z, cv_field_x, cv_field_y, cv_field_z, field, i, j, k, dim) |
| | Integrate on the field Given a 'scheme' and the 'order' of interpolation.
|
| |
| double precision function | func_identity (x, arg) |
| |
| double precision function | mod_integration_computer::integ_compute_from_field_with_function (scheme, order, pos_field_x, pos_field_y, pos_field_z, cv_field_x, cv_field_y, cv_field_z, field, i, j, k, dim, func, arg) |
| | Integrate on the field Given a 'scheme' and the 'order' of interpolation Apply the given scalar function to the interpolated values.
|
| |
| double precision function | mod_integration_computer::integ_compute_from_face_field (scheme, order, pos_field_x, pos_field_y, pos_field_z, cv_field_x, cv_field_y, cv_field_z, field, i, j, k, dim, comp) |
| | Integrate on the field Given a 'scheme' and the 'order' of interpolation Using the component 'comp' (1 for 'u', 2 for 'v', 3 for 'w')
|
| |