Hessian operator from cells to cells.
Functions/Subroutines | |
subroutine | hessian_operator_cell_to_cell (field, hessian, order) |
Hessian matrix using n-th order centered differences. | |
subroutine | hessian_operator_cell_to_cell_generic (scheme_first, scheme_second, field, field_res) |
Compute the hessian of field on cells with the given scheme. | |
subroutine mod_hessian_operator_cell_to_cell::hessian_operator_cell_to_cell | ( | double precision, dimension(:,:,:), intent(in) | field, |
double precision, dimension(:,:,:,:,:), intent(inout) | hessian, | ||
integer | order ) |
Hessian matrix using n-th order centered differences.
The Hessian of \( \phi \) is the matrix
\begin{align} \mathbf{H} \phi &= \begin{pmatrix} \frac{\partial^2 \phi}{\partial x \partial x} & \frac{\partial^2 \phi}{\partial x \partial y} & \frac{\partial^2 \phi}{\partial x \partial z} \\ \frac{\partial^2 \phi}{\partial y \partial x} & \frac{\partial^2 \phi}{\partial y \partial y} & \frac{\partial^2 \phi}{\partial y \partial z} \\ \frac{\partial^2 \phi}{\partial z \partial x} & \frac{\partial^2 \phi}{\partial z \partial y} & \frac{\partial^2 \phi}{\partial z \partial z} \end{pmatrix} \,. \end{align}
The actual scheme is selected using the order
and direction
arguments. The former selects the order of finites differences, while the latter select the centering
Valid values for order
is 2 and 4.
[in] | field | cell field to derivate |
[in,out] | hessian | rank-5 cell field holding the Hessian |
[in] | order | of the finite-difference scheme |
subroutine mod_hessian_operator_cell_to_cell::hessian_operator_cell_to_cell_generic | ( | class(t_fd_scheme), intent(inout) | scheme_first, |
class(t_fd_scheme), intent(inout) | scheme_second, | ||
double precision, dimension(:,:,:), intent(in) | field, | ||
double precision, dimension(:,:,:,:,:), intent(inout) | field_res ) |
[in,out] | scheme_first | the FD scheme |
[in,out] | scheme_second | the FD scheme |
[in] | field | the input field for which we comptue the gradient |
[in,out] | field_res | the resulting gradient field |