Grid nodes Interpolation Schemes type The difference with the t_int_point_1D
resides in that the scheme is defined in a narrowed band between index_start
and index_end
. The stencil is centered around the index 0
, the step is relative to this node.
|
type | t_int_scheme |
| The interpolation scheme to derivate from It simply derivates from the fd_scheme. More...
|
|
|
subroutine | t_int_scheme_init (self) |
| Initialize a 1D point interpolant.
|
|
subroutine | t_int_compute_stencil_generic (self, step, steps, derivative) |
| Compute the stencil with a generic interpolation procedure.
|
|
pure double precision function | t_int_scheme_apply (self, values) |
| Apply the stencil of the interpolant after it has been placed, given the array of discrete node values. The result is the interpolation.
|
|
double precision function | t_int_scheme_interpolate (self, step, steps, values, derivative) |
| Interpolate at step with values . The steps and the values are given in interval 'index_start:index_end'.
|
|
◆ t_int_compute_stencil_generic()
subroutine type_int_scheme::t_int_compute_stencil_generic |
( |
class(t_int_scheme), intent(inout) | self, |
|
|
double precision, intent(in) | step, |
|
|
double precision, dimension(:), intent(in) | steps, |
|
|
integer, intent(in), optional | derivative ) |
- Note
- This can be overloaded by a deriving scheme with an optimized version
- Parameters
-
[in,out] | self | the element |
[in] | step | the step where to interpolate relatively to the reference node 0 |
[in] | steps | the steps between the node values (of size N-1) |
[in] | derivative | *(optional)* the derivative number: 0 (default) for value interpolation, 1 for first derivative, etc. |
dds
is indexed over [points,derivative]
◆ t_int_scheme_apply()
pure double precision function type_int_scheme::t_int_scheme_apply |
( |
class(t_int_scheme), intent(in) | self, |
|
|
double precision, dimension(:), intent(in) | values ) |
- Parameters
-
[in] | self | the element |
[in] | values | the values in the (virtual) interval 'index_start:index_end' |
- Precondition
- the subroutine 'compute_stencil' have been previously called
◆ t_int_scheme_init()
subroutine type_int_scheme::t_int_scheme_init |
( |
class(t_int_scheme), intent(inout) | self | ) |
|
◆ t_int_scheme_interpolate()
double precision function type_int_scheme::t_int_scheme_interpolate |
( |
class(t_int_scheme), intent(inout) | self, |
|
|
double precision, intent(in) | step, |
|
|
double precision, dimension(:), intent(in) | steps, |
|
|
double precision, dimension(:), intent(in) | values, |
|
|
integer, intent(in), optional | derivative ) |
- Parameters
-
[in,out] | self | the element |
[in] | step | The + step from x(i). |
[in] | steps | The spatial disc. steps of the intervals \( I_i \) where the values are defined |
[in] | values | the values in the (virtual) interval 'index_start:index_end' |
[in] | derivative | *(optional)* the derivative number: 0 (default) for value interpolation, 1 for first derivative, etc. |