Gradient operator from cells to faces.
Functions/Subroutines | |
subroutine | gradient_operator_cell_to_face (gradient, array, order) |
Gradient generic function. | |
subroutine | gradient_operator_cell_to_face_o2 (gradient, array) |
Gradient using \(2^{nd}\) order interpolation ( \(1^{st}\) order for non uniform meshes). | |
subroutine | gradient_operator_cell_to_face_o4 (gradient, array) |
Gradient using \(4^{th}\) order interpolation ( \(3^{rd}\) order for non uniform meshes). | |
subroutine mod_gradient_operator_cell_to_face::gradient_operator_cell_to_face | ( | type(t_face_field), intent(inout) | gradient, |
double precision, dimension(:,:,:), intent(in) | array, | ||
integer, intent(in), optional | order ) |
Gradient using \(2^{nd}\) or \(4^{th}\) order interpolation.
The gradient of \( \phi \) is the vector
\begin{align} \nabla \phi &= \left( \frac{\partial \phi}{\partial x} , \frac{\partial \phi}{\partial y} , \frac{\partial \phi}{\partial z} \right) \,. \end{align}
gradient(isu,*,*)
)[in,out] | gradient | the resulting gradient face field |
[in] | array | the point quantity on which we want to compute the gradient |
[in] | order | the order of spatial precision: 2 or 4 (default=2), enum_discretization_type |
subroutine mod_gradient_operator_cell_to_face::gradient_operator_cell_to_face_o2 | ( | type(t_face_field), intent(inout) | gradient, |
double precision, dimension(:,:,:), intent(in) | array ) |
Gradient using \(2^{nd}\) order interpolation ( \(1^{st}\) order for non uniform meshes).
The gradient of \( \phi \) is the vector
\begin{align} \nabla \phi &= \left( \frac{\partial \phi}{\partial x} , \frac{\partial \phi}{\partial y} , \frac{\partial \phi}{\partial z} \right) \,. \end{align}
gradient(isu,*,*)
) subroutine mod_gradient_operator_cell_to_face::gradient_operator_cell_to_face_o4 | ( | type(t_face_field), intent(inout) | gradient, |
double precision, dimension(:,:,:), intent(in) | array ) |
Gradient using \(4^{th}\) order interpolation ( \(3^{rd}\) order for non uniform meshes).
The gradient of \( \phi \) is the vector
\begin{align} \nabla \phi &= \left( \frac{\partial \phi}{\partial x} , \frac{\partial \phi}{\partial y} , \frac{\partial \phi}{\partial z} \right) \,. \end{align}
gradient(isu,*,*)
)