|
| pure double precision function | mod_interpolation_polynomial::evaluate_polynomial (x, coefficients) |
| | Evaluate a polynomial at x such that \( P(x) = \sum_{i=0} a_i x^i \).
|
| |
| pure double precision function, dimension(size(coeffs1)+size(coeffs2) -1) | mod_interpolation_polynomial::multiply_polynomials (coeffs1, coeffs2) |
| | Multiply a polynomial by another one.
|
| |
| pure double precision function, dimension(size(coefficients) -1) | mod_interpolation_polynomial::derivate_polynomial (coefficients) |
| | Derivate a polynomial defined by its N coefficients.
|
| |
| recursive pure double precision function, dimension(size(coefficients) -m) | mod_interpolation_polynomial::derivate_polynomial_m (coefficients, m) |
| | Derivate M times a polynomial defined by its N coefficients.
|
| |
| pure double precision function, dimension(size(coefficients)+1) | mod_interpolation_polynomial::integrate_polynomial (coefficients) |
| | Integrate a polynomial defined by its N coefficients.
|
| |
| pure double precision function | mod_interpolation_polynomial::evaluate_polynomial_integral (x1, x2, coefficients) |
| | Integrate the polynomial in the given interval.
|
| |
| pure double precision function | mod_interpolation_polynomial::evaluate_polynomial_mean (x1, x2, coefficients) |
| | Compute the mean value of the polynomial in the given interval.
|
| |
| pure double precision function, dimension(n) | mod_interpolation_polynomial::get_xvector (x, n) |
| | Get the vector made of the powers of x.
|
| |